[Tarantool-patches] [PATCH v5 19/52] sql: introduce arithmetic operations for MEM
imeevma at tarantool.org
imeevma at tarantool.org
Fri Apr 9 20:57:23 MSK 2021
Thank you for the review! My answers and new patch below.
On 30.03.2021 02:02, Vladislav Shpilevoy wrote:
> Thanks for the patch!
>
> See 3 comments below.
>
> On 23.03.2021 10:35, Mergen Imeev via Tarantool-patches wrote:
>> This patch introduces mem_arithmetic(). Function mem_arithmetic()
>> executes arithmetic operations on the first and the second MEMs and
>> writes the result to the third MEM.
>>
>> Part of #5818
>> ---
>> src/box/sql/mem.c | 224 +++++++++++++++++++++++++++++++++++++--------
>> src/box/sql/mem.h | 6 +-
>> src/box/sql/vdbe.c | 111 +---------------------
>> 3 files changed, 193 insertions(+), 148 deletions(-)
>>
>> diff --git a/src/box/sql/mem.c b/src/box/sql/mem.c
>> index f160439c9..6120939d8 100644
>> --- a/src/box/sql/mem.c
>> +++ b/src/box/sql/mem.c
>> @@ -370,6 +370,192 @@ mem_concat(struct Mem *left, struct Mem *right, struct Mem *result)
>> return 0;
>> }
>>
>> +int
>> +mem_arithmetic(const struct Mem *left, const struct Mem *right,
>> + struct Mem *result, int op)
>> +{
>> + sqlVdbeMemSetNull(result);
>
> 1. Lets use mem_clear() directly. You delete sqlVdbeMemSetNull() later
> anyway.
>
Fixed.
>> + result->field_type = FIELD_TYPE_NUMBER;
>> + if (((left->flags | right->flags) & MEM_Null) != 0)
>> + return 0;
>> +
>> + int64_t il;
>> + bool is_l_neg;
>> + double dl;
>> + uint16_t type_left = 0;
>
> 2. Looks surprising when you use 'l' in 3 variables before
> and suddenly 'left' here.
>
> Tbh, the old names with A and B looked easier to read. Up to you,
> I can live with both.
>
Fixed, I think.
>> + if ((left->flags & MEM_Real) != 0) {
>> + dl = left->u.r;
>> + type_left = MEM_Real;
>> + } else if ((left->flags & MEM_Int) != 0) {
>> + il = left->u.i;
>> + type_left = MEM_Int;
>> + is_l_neg = true;
>> + } else if ((left->flags & MEM_UInt) != 0) {
>> + il = left->u.i;
>> + type_left = MEM_UInt;
>> + is_l_neg = false;
>> + } else if ((left->flags & (MEM_Str | MEM_Blob)) != 0) {
>> + if (sql_atoi64(left->z, &il, &is_l_neg, left->n) == 0)
>> + type_left = is_l_neg ? MEM_Int : MEM_UInt;
>> + else if (sqlAtoF(left->z, &dl, left->n) != 0)
>> + type_left = MEM_Real;
>> + }
>> +
>> + int64_t ir;
>> + bool is_r_neg;
>> + double dr;
>> + uint16_t type_right = 0;
>> + if ((right->flags & MEM_Real) != 0) {
>> + dr = right->u.r;
>> + type_right = MEM_Real;
>> + } else if ((right->flags & MEM_Int) != 0) {
>> + ir = right->u.i;
>> + type_right = MEM_Int;
>> + is_r_neg = true;
>> + } else if ((right->flags & MEM_UInt) != 0) {
>> + ir = right->u.i;
>> + type_right = MEM_UInt;
>> + is_r_neg = false;
>> + } else if ((right->flags & (MEM_Str | MEM_Blob)) != 0) {
>> + if (sql_atoi64(right->z, &ir, &is_r_neg, right->n) == 0)
>> + type_right = is_r_neg ? MEM_Int : MEM_UInt;
>> + else if (sqlAtoF(right->z, &dr, right->n) != 0)
>> + type_right = MEM_Real;
>> + }
>> +
>> + if ((type_right & (MEM_Int | MEM_UInt | MEM_Real)) == 0) {
>> + diag_set(ClientError, ER_SQL_TYPE_MISMATCH,
>> + mem_str(right), "numeric");
>> + return -1;
>> + }
>> + if ((type_left & (MEM_Int | MEM_UInt | MEM_Real)) == 0) {
>> + diag_set(ClientError, ER_SQL_TYPE_MISMATCH,
>> + mem_str(left), "numeric");
>> + return -1;
>> + }
>> + if (((type_left | type_right) & MEM_Real) != 0) {
>> + if (type_left == MEM_Int)
>> + dl = (double)il;
>> + else if (type_left == MEM_UInt)
>> + dl = (double)(uint64_t)il;
>> +
>> + if (type_right == MEM_Int)
>> + dr = (double)ir;
>> + else if (type_right == MEM_UInt)
>> + dr = (double)(uint64_t)ir;
>> +
>> + double dres;
>> + switch(op) {
>> + case OP_Add:
>> + dres = dl + dr;
>> + break;
>> + case OP_Subtract:
>> + dres = dl - dr;
>> + break;
>> + case OP_Multiply:
>> + dres = dl * dr;
>> + break;
>> + case OP_Divide:
>> + if (dr == 0.) {
>> + diag_set(ClientError, ER_SQL_EXECUTE,
>> + "division by zero");
>> + return -1;
>> + }
>> + dres = dl / dr;
>> + break;
>> + case OP_Remainder: {
>> + int64_t il = (int64_t)dl;
>> + int64_t ir = (int64_t)dr;
>> + if (ir == 0) {
>> + diag_set(ClientError, ER_SQL_EXECUTE,
>> + "division by zero");
>> + return -1;
>> + }
>> + if (ir == -1)
>> + ir = 1;
>> + dres = (double)(il % ir);
>> + break;
>> + }
>> + default:
>> + unreachable();
>> + }
>> + if (sqlIsNaN(dres))
>> + return 0;
>> + result->u.r = dres;
>> + result->flags = MEM_Real;
>> + return 0;
>> + }
>> + int64_t ires;
>> + /*
>> + * TODO: This is wrong. Both these flags should already be set. This
>> + * assignment done to not change behaviour of the function, which
>> + * is currently bugged.
>> + */
>> + is_l_neg = (left->flags & MEM_Int) != 0;
>> + is_r_neg = (right->flags & MEM_Int) != 0;
>> + bool is_res_neg;
>> + switch(op) {
>> + case OP_Add:
>> + if (sql_add_int(il, is_l_neg, ir, is_r_neg, &ires,
>> + &is_res_neg) != 0) {
>> + diag_set(ClientError, ER_SQL_EXECUTE,
>> + "integer is overflowed");
>> + return -1;
>> + }
>> + break;
>> + case OP_Subtract:
>> + if (sql_sub_int(il, is_l_neg, ir, is_r_neg, &ires,
>> + &is_res_neg) != 0) {
>> + diag_set(ClientError, ER_SQL_EXECUTE,
>> + "integer is overflowed");
>> + return -1;
>> + }
>> + break;
>> + case OP_Multiply:
>> + if (sql_mul_int(il, is_l_neg, ir, is_r_neg, &ires,
>> + &is_res_neg) != 0) {
>> + diag_set(ClientError, ER_SQL_EXECUTE,
>> + "integer is overflowed");
>> + return -1;
>> + }
>> + break;
>> + case OP_Divide:
>> + if (ir == 0) {
>> + diag_set(ClientError, ER_SQL_EXECUTE,
>> + "division by zero");
>> + return -1;
>> + }
>> + if (sql_div_int(il, is_l_neg, ir, is_r_neg, &ires,
>> + &is_res_neg) != 0) {
>> + diag_set(ClientError, ER_SQL_EXECUTE,
>> + "integer is overflowed");
>> + return -1;
>> + }
>> + break;
>> + case OP_Remainder: {
>> + if (ir == 0) {
>> + diag_set(ClientError, ER_SQL_EXECUTE,
>> + "division by zero");
>> + return -1;
>> + }
>> + if (ir == -1)
>> + ir = 1;
>> + if (sql_rem_int(il, is_l_neg, ir, is_r_neg, &ires,
>> + &is_res_neg) != 0) {
>> + diag_set(ClientError, ER_SQL_EXECUTE,
>> + "integer is overflowed");
>> + return -1;
>> + }
>> + break;
>> + }
>> + default:
>> + unreachable();
>> + }
>> + result->u.i = ires;
>> + result->flags = is_res_neg ? MEM_Int : MEM_UInt;
>> + return 0;
>
> 3. The original code looked shorter and easier to read. Why did you
> pad it out so much?
>
> Additionally, since you now have a function for doing arith, you
> could make one function for each opcode with common parts as a
> static functions in mem.c, and call them right from 'case's in
> vdbe.c. So instead of one big case,case,case,case: arith which
> also has a switch inside, we would have proper case: plus,
> case: multiply, etc. Would be faster and would make each
> individual function simpler I think.
>
> The names could be mem_arith_plus(), mem_arith_mul(), mem_arith_minus(),
> etc.
Fixed. I named new functions mem_add(), mem_sub(), mem_mul(), mem_div() and
mem_rem(). Each of them simpler than this function.
New patch:
commit 25bd849d8ebd45d3865770f1c4c6fc0c02d53d6a
Author: Mergen Imeev <imeevma at gmail.com>
Date: Sun Mar 14 11:51:52 2021 +0300
sql: introduce arithmetic operations for MEM
This patch introduces mem_add(), mem_sub(), mem_mul(), mem_div() and
mem_rem(), which perform arithmetic operations on two MEMs. Operands
must contain values of numeric types or values that can be converted
to a number according to implicit casting rules.
Part of #5818
diff --git a/src/box/sql/mem.c b/src/box/sql/mem.c
index 2d76ef88d..859e337aa 100644
--- a/src/box/sql/mem.c
+++ b/src/box/sql/mem.c
@@ -390,6 +390,240 @@ mem_concat(struct Mem *a, struct Mem *b, struct Mem *result)
return 0;
}
+struct sql_num {
+ union {
+ int64_t i;
+ uint64_t u;
+ double d;
+ };
+ int type;
+ bool is_neg;
+};
+
+static int
+get_number(const struct Mem *mem, struct sql_num *number)
+{
+ if ((mem->flags & MEM_Real) != 0) {
+ number->d = mem->u.r;
+ number->type = MEM_Real;
+ return 0;
+ }
+ if ((mem->flags & MEM_Int) != 0) {
+ number->i = mem->u.i;
+ number->type = MEM_Int;
+ number->is_neg = true;
+ return 0;
+ }
+ if ((mem->flags & MEM_UInt) != 0) {
+ number->u = mem->u.u;
+ number->type = MEM_UInt;
+ number->is_neg = false;
+ return 0;
+ }
+ if ((mem->flags & (MEM_Str | MEM_Blob)) == 0)
+ return -1;
+ if ((mem->flags & MEM_Subtype) != 0)
+ return -1;
+ if (sql_atoi64(mem->z, &number->i, &number->is_neg, mem->n) == 0) {
+ number->type = number->is_neg ? MEM_Int : MEM_UInt;
+ /*
+ * The next line should be removed along with the is_neg field
+ * of struct sql_num. The integer type tells us about the sign.
+ * However, if it is removed, the behavior of arithmetic
+ * operations will change.
+ */
+ number->is_neg = (mem->flags & MEM_Int) != 0;
+ return 0;
+ }
+ if (sqlAtoF(mem->z, &number->d, mem->n) != 0) {
+ number->type = MEM_Real;
+ return 0;
+ }
+ return -1;
+}
+
+static int
+arithmetic_prepare(const struct Mem *left, const struct Mem *right,
+ struct sql_num *a, struct sql_num *b)
+{
+ if (get_number(right, b) != 0) {
+ diag_set(ClientError, ER_SQL_TYPE_MISMATCH, mem_str(right),
+ "numeric");
+ return -1;
+ }
+ if (get_number(left, a) != 0) {
+ diag_set(ClientError, ER_SQL_TYPE_MISMATCH, mem_str(left),
+ "numeric");
+ return -1;
+ }
+ assert(a->type != 0 && b->type != 0);
+ if (a->type == MEM_Real && b->type != MEM_Real) {
+ b->d = b->type == MEM_Int ? (double)b->i : (double)b->u;
+ b->type = MEM_Real;
+ return 0;
+ }
+ if (a->type != MEM_Real && b->type == MEM_Real) {
+ a->d = a->type == MEM_Int ? (double)a->i : (double)a->u;
+ a->type = MEM_Real;
+ return 0;
+ }
+ return 0;
+}
+
+int
+mem_add(const struct Mem *left, const struct Mem *right, struct Mem *result)
+{
+ if (is_result_null(left, right, result, FIELD_TYPE_NUMBER))
+ return 0;
+
+ struct sql_num a, b;
+ if (arithmetic_prepare(left, right, &a, &b) != 0)
+ return -1;
+
+ assert(a.type != MEM_Real || a.type == b.type);
+ if (a.type == MEM_Real) {
+ result->u.r = a.d + b.d;
+ result->flags = MEM_Real;
+ return 0;
+ }
+
+ int64_t res;
+ bool is_neg;
+ if (sql_add_int(a.i, a.is_neg, b.i, b.is_neg, &res, &is_neg) != 0) {
+ diag_set(ClientError, ER_SQL_EXECUTE, "integer is overflowed");
+ return -1;
+ }
+ result->u.i = res;
+ result->flags = is_neg ? MEM_Int : MEM_UInt;
+ return 0;
+}
+
+int
+mem_sub(const struct Mem *left, const struct Mem *right, struct Mem *result)
+{
+ if (is_result_null(left, right, result, FIELD_TYPE_NUMBER))
+ return 0;
+
+ struct sql_num a, b;
+ if (arithmetic_prepare(left, right, &a, &b) != 0)
+ return -1;
+
+ assert(a.type != MEM_Real || a.type == b.type);
+ if (a.type == MEM_Real) {
+ result->u.r = a.d - b.d;
+ result->flags = MEM_Real;
+ return 0;
+ }
+
+ int64_t res;
+ bool is_neg;
+ if (sql_sub_int(a.i, a.is_neg, b.i, b.is_neg, &res, &is_neg) != 0) {
+ diag_set(ClientError, ER_SQL_EXECUTE, "integer is overflowed");
+ return -1;
+ }
+ result->u.i = res;
+ result->flags = is_neg ? MEM_Int : MEM_UInt;
+ return 0;
+}
+
+int
+mem_mul(const struct Mem *left, const struct Mem *right, struct Mem *result)
+{
+ if (is_result_null(left, right, result, FIELD_TYPE_NUMBER))
+ return 0;
+
+ struct sql_num a, b;
+ if (arithmetic_prepare(left, right, &a, &b) != 0)
+ return -1;
+
+ assert(a.type != MEM_Real || a.type == b.type);
+ if (a.type == MEM_Real) {
+ result->u.r = a.d * b.d;
+ result->flags = MEM_Real;
+ return 0;
+ }
+
+ int64_t res;
+ bool is_neg;
+ if (sql_mul_int(a.i, a.is_neg, b.i, b.is_neg, &res, &is_neg) != 0) {
+ diag_set(ClientError, ER_SQL_EXECUTE, "integer is overflowed");
+ return -1;
+ }
+ result->u.i = res;
+ result->flags = is_neg ? MEM_Int : MEM_UInt;
+ return 0;
+}
+
+int
+mem_div(const struct Mem *left, const struct Mem *right, struct Mem *result)
+{
+ if (is_result_null(left, right, result, FIELD_TYPE_NUMBER))
+ return 0;
+
+ struct sql_num a, b;
+ if (arithmetic_prepare(left, right, &a, &b) != 0)
+ return -1;
+
+ assert(a.type != MEM_Real || a.type == b.type);
+ if (a.type == MEM_Real) {
+ if (b.d == 0.) {
+ diag_set(ClientError, ER_SQL_EXECUTE,
+ "division by zero");
+ return -1;
+ }
+ result->u.r = a.d / b.d;
+ result->flags = MEM_Real;
+ return 0;
+ }
+
+ if (b.i == 0) {
+ diag_set(ClientError, ER_SQL_EXECUTE, "division by zero");
+ return -1;
+ }
+ int64_t res;
+ bool is_neg;
+ if (sql_div_int(a.i, a.is_neg, b.i, b.is_neg, &res, &is_neg) != 0) {
+ diag_set(ClientError, ER_SQL_EXECUTE, "integer is overflowed");
+ return -1;
+ }
+ result->u.i = res;
+ result->flags = is_neg ? MEM_Int : MEM_UInt;
+ return 0;
+}
+
+int
+mem_rem(const struct Mem *left, const struct Mem *right, struct Mem *result)
+{
+ if (is_result_null(left, right, result, FIELD_TYPE_NUMBER))
+ return 0;
+
+ struct sql_num a, b;
+ if (arithmetic_prepare(left, right, &a, &b) != 0)
+ return -1;
+
+ assert(a.type != MEM_Real || a.type == b.type);
+ /*
+ * TODO: This operation works wrong when double d > INT64_MAX and
+ * d < UINT64_MAX. Also, there may be precision losses due to
+ * conversion integer to double and back.
+ */
+ a.i = a.type == MEM_Real ? (int64_t)a.d : a.i;
+ b.i = b.type == MEM_Real ? (int64_t)b.d : b.i;
+ if (b.i == 0) {
+ diag_set(ClientError, ER_SQL_EXECUTE, "division by zero");
+ return -1;
+ }
+ int64_t res;
+ bool is_neg;
+ if (sql_rem_int(a.i, a.is_neg, b.i, b.is_neg, &res, &is_neg) != 0) {
+ diag_set(ClientError, ER_SQL_EXECUTE, "integer is overflowed");
+ return -1;
+ }
+ result->u.i = res;
+ result->flags = is_neg ? MEM_Int : MEM_UInt;
+ return 0;
+}
+
static inline bool
mem_has_msgpack_subtype(struct Mem *mem)
{
@@ -594,44 +828,6 @@ sql_value_type(sql_value *pVal)
return mem_mp_type(mem);
}
-
-/*
- * pMem currently only holds a string type (or maybe a BLOB that we can
- * interpret as a string if we want to). Compute its corresponding
- * numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
- * accordingly.
- */
-static u16 SQL_NOINLINE
-computeNumericType(Mem *pMem)
-{
- assert((pMem->flags & (MEM_Int | MEM_UInt | MEM_Real)) == 0);
- assert((pMem->flags & (MEM_Str|MEM_Blob))!=0);
- if (sqlAtoF(pMem->z, &pMem->u.r, pMem->n)==0)
- return 0;
- bool is_neg;
- if (sql_atoi64(pMem->z, (int64_t *) &pMem->u.i, &is_neg, pMem->n) == 0)
- return is_neg ? MEM_Int : MEM_UInt;
- return MEM_Real;
-}
-
-/*
- * Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
- * none.
- *
- * Unlike mem_apply_numeric_type(), this routine does not modify pMem->flags.
- * But it does set pMem->u.r and pMem->u.i appropriately.
- */
-u16
-numericType(Mem *pMem)
-{
- if ((pMem->flags & (MEM_Int | MEM_UInt | MEM_Real)) != 0)
- return pMem->flags & (MEM_Int | MEM_UInt | MEM_Real);
- if (pMem->flags & (MEM_Str|MEM_Blob)) {
- return computeNumericType(pMem);
- }
- return 0;
-}
-
/*
* The sqlValueBytes() routine returns the number of bytes in the
* sql_value object assuming that it uses the encoding "enc".
diff --git a/src/box/sql/mem.h b/src/box/sql/mem.h
index df273026b..69a7d9f7a 100644
--- a/src/box/sql/mem.h
+++ b/src/box/sql/mem.h
@@ -192,6 +192,40 @@ mem_move(struct Mem *to, struct Mem *from);
int
mem_concat(struct Mem *left, struct Mem *right, struct Mem *result);
+/**
+ * Add the first MEM to the second MEM and write the result to the third MEM.
+ */
+int
+mem_add(const struct Mem *left, const struct Mem *right, struct Mem *result);
+
+/**
+ * Subtract the second MEM from the first MEM and write the result to the third
+ * MEM.
+ */
+int
+mem_sub(const struct Mem *left, const struct Mem *right, struct Mem *result);
+
+/**
+ * Multiply the first MEM by the second MEM and write the result to the third
+ * MEM.
+ */
+int
+mem_mul(const struct Mem *left, const struct Mem *right, struct Mem *result);
+
+/**
+ * Divide the first MEM by the second MEM and write the result to the third
+ * MEM.
+ */
+int
+mem_div(const struct Mem *left, const struct Mem *right, struct Mem *result);
+
+/**
+ * Divide the first MEM by the second MEM and write integer part of the result
+ * to the third MEM.
+ */
+int
+mem_rem(const struct Mem *left, const struct Mem *right, struct Mem *result);
+
/* One or more of the following flags are set to indicate the validOK
* representations of the value stored in the Mem struct.
*
@@ -261,8 +295,6 @@ mem_mp_type(struct Mem *mem);
enum mp_type
sql_value_type(struct Mem *);
-u16
-numericType(Mem *pMem);
int sqlValueBytes(struct Mem *);
diff --git a/src/box/sql/vdbe.c b/src/box/sql/vdbe.c
index 6f3475147..67e1cc85a 100644
--- a/src/box/sql/vdbe.c
+++ b/src/box/sql/vdbe.c
@@ -1076,6 +1076,15 @@ case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
* and store the result in register P3.
* If either input is NULL, the result is NULL.
*/
+case OP_Add: { /* same as TK_PLUS, in1, in2, out3 */
+ pIn1 = &aMem[pOp->p1];
+ pIn2 = &aMem[pOp->p2];
+ pOut = &aMem[pOp->p3];
+ if (mem_add(pIn2, pIn1, pOut) != 0)
+ goto abort_due_to_error;
+ break;
+}
+
/* Opcode: Multiply P1 P2 P3 * *
* Synopsis: r[P3]=r[P1]*r[P2]
*
@@ -1084,6 +1093,15 @@ case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
* and store the result in register P3.
* If either input is NULL, the result is NULL.
*/
+case OP_Multiply: { /* same as TK_STAR, in1, in2, out3 */
+ pIn1 = &aMem[pOp->p1];
+ pIn2 = &aMem[pOp->p2];
+ pOut = &aMem[pOp->p3];
+ if (mem_mul(pIn2, pIn1, pOut) != 0)
+ goto abort_due_to_error;
+ break;
+}
+
/* Opcode: Subtract P1 P2 P3 * *
* Synopsis: r[P3]=r[P2]-r[P1]
*
@@ -1091,6 +1109,15 @@ case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
* and store the result in register P3.
* If either input is NULL, the result is NULL.
*/
+case OP_Subtract: { /* same as TK_MINUS, in1, in2, out3 */
+ pIn1 = &aMem[pOp->p1];
+ pIn2 = &aMem[pOp->p2];
+ pOut = &aMem[pOp->p3];
+ if (mem_sub(pIn2, pIn1, pOut) != 0)
+ goto abort_due_to_error;
+ break;
+}
+
/* Opcode: Divide P1 P2 P3 * *
* Synopsis: r[P3]=r[P2]/r[P1]
*
@@ -1099,6 +1126,15 @@ case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
* register P1 is zero, then the result is NULL. If either input is
* NULL, the result is NULL.
*/
+case OP_Divide: { /* same as TK_SLASH, in1, in2, out3 */
+ pIn1 = &aMem[pOp->p1];
+ pIn2 = &aMem[pOp->p2];
+ pOut = &aMem[pOp->p3];
+ if (mem_div(pIn2, pIn1, pOut) != 0)
+ goto abort_due_to_error;
+ break;
+}
+
/* Opcode: Remainder P1 P2 P3 * *
* Synopsis: r[P3]=r[P2]%r[P1]
*
@@ -1107,120 +1143,13 @@ case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
* If the value in register P1 is zero the result is NULL.
* If either operand is NULL, the result is NULL.
*/
-case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
-case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
-case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
-case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
- u16 type1; /* Numeric type of left operand */
- u16 type2; /* Numeric type of right operand */
- i64 iA; /* Integer value of left operand */
- i64 iB; /* Integer value of right operand */
- double rA; /* Real value of left operand */
- double rB; /* Real value of right operand */
-
pIn1 = &aMem[pOp->p1];
- type1 = numericType(pIn1);
pIn2 = &aMem[pOp->p2];
- type2 = numericType(pIn2);
- pOut = vdbe_prepare_null_out(p, pOp->p3);
- if (mem_is_any_null(pIn1, pIn2))
- goto arithmetic_result_is_null;
- if ((type1 & (MEM_Int | MEM_UInt)) != 0 &&
- (type2 & (MEM_Int | MEM_UInt)) != 0) {
- iA = pIn1->u.i;
- iB = pIn2->u.i;
- bool is_lhs_neg = mem_is_int(pIn1) && !mem_is_uint(pIn1);
- bool is_rhs_neg = mem_is_int(pIn2) && !mem_is_uint(pIn2);
- bool is_res_neg;
- switch( pOp->opcode) {
- case OP_Add: {
- if (sql_add_int(iA, is_lhs_neg, iB, is_rhs_neg,
- (int64_t *) &iB, &is_res_neg) != 0)
- goto integer_overflow;
- break;
- }
- case OP_Subtract: {
- if (sql_sub_int(iB, is_rhs_neg, iA, is_lhs_neg,
- (int64_t *) &iB, &is_res_neg) != 0)
- goto integer_overflow;
- break;
- }
- case OP_Multiply: {
- if (sql_mul_int(iA, is_lhs_neg, iB, is_rhs_neg,
- (int64_t *) &iB, &is_res_neg) != 0)
- goto integer_overflow;
- break;
- }
- case OP_Divide: {
- if (iA == 0)
- goto division_by_zero;
- if (sql_div_int(iB, is_rhs_neg, iA, is_lhs_neg,
- (int64_t *) &iB, &is_res_neg) != 0)
- goto integer_overflow;
- break;
- }
- default: {
- if (iA == 0)
- goto division_by_zero;
- if (iA==-1) iA = 1;
- if (sql_rem_int(iB, is_rhs_neg, iA, is_lhs_neg,
- (int64_t *) &iB, &is_res_neg) != 0)
- goto integer_overflow;
- break;
- }
- }
- mem_set_int(pOut, iB, is_res_neg);
- } else {
- if (sqlVdbeRealValue(pIn1, &rA) != 0) {
- diag_set(ClientError, ER_SQL_TYPE_MISMATCH,
- mem_str(pIn1), "numeric");
- goto abort_due_to_error;
- }
- if (sqlVdbeRealValue(pIn2, &rB) != 0) {
- diag_set(ClientError, ER_SQL_TYPE_MISMATCH,
- mem_str(pIn2), "numeric");
- goto abort_due_to_error;
- }
- assert(((type1 | type2) & MEM_Real) != 0);
- switch( pOp->opcode) {
- case OP_Add: rB += rA; break;
- case OP_Subtract: rB -= rA; break;
- case OP_Multiply: rB *= rA; break;
- case OP_Divide: {
- if (rA == (double)0)
- goto division_by_zero;
- rB /= rA;
- break;
- }
- default: {
- iA = (i64)rA;
- iB = (i64)rB;
- if (iA == 0)
- goto division_by_zero;
- if (iA==-1) iA = 1;
- rB = (double)(iB % iA);
- break;
- }
- }
- if (sqlIsNaN(rB)) {
- goto arithmetic_result_is_null;
- }
- mem_set_double(pOut, rB);
- }
- break;
-
-arithmetic_result_is_null:
- /* Force NULL be of type NUMBER. */
- pOut->field_type = FIELD_TYPE_NUMBER;
+ pOut = &aMem[pOp->p3];
+ if (mem_rem(pIn2, pIn1, pOut) != 0)
+ goto abort_due_to_error;
break;
-
-division_by_zero:
- diag_set(ClientError, ER_SQL_EXECUTE, "division by zero");
- goto abort_due_to_error;
-integer_overflow:
- diag_set(ClientError, ER_SQL_EXECUTE, "integer is overflowed");
- goto abort_due_to_error;
}
/* Opcode: CollSeq P1 * * P4
More information about the Tarantool-patches
mailing list